求函数\displaystyle f(x)=\frac{x^2-x}{x^2-1}\sqrt{1+\frac{1}{x^2}}的间断点.
解:函数f(x)在x=0,x=\pm1处无定义,从而x=0,x=\pm1是f(x)的间断点.
f(x)=\mathrm{sgn}(x)\dfrac{\sqrt{x^2+1}}{x+1}.
又\lim\limits_{x\to1}f(x)=\dfrac{\sqrt{2}}{2},\lim\limits_{x\to0^-}f(x)=-1\neq\lim\limits_{x\to0^+}f(x)=1,\lim\limits_{x\to{-1}}f(x)=\infty.
故x=0是f(x)的跳跃间断点,x=1是f(x)的可去间断点,x=-1是f(x)的无穷间断点.